MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis.

نویسندگان

  • Chi-Hong Chao
  • Chao-Ching Chang
  • Meng-Ju Wu
  • How-Wen Ko
  • Da Wang
  • Mien-Chie Hung
  • Jer-Yen Yang
  • Chun-Ju Chang
چکیده

Dysregulation of epigenetic controls is associated with tumorigenesis in response to microenvironmental stimuli; however, the regulatory pathways involved in epigenetic dysfunction are largely unclear. We have determined that a critical epigenetic regulator, microRNA-205 (miR-205), is repressed by the ligand jagged1, which is secreted from the tumor stroma to promote a cancer-associated stem cell phenotype. Knockdown of miR-205 in mammary epithelial cells promoted epithelial-mesenchymal transition (EMT), disrupted epithelial cell polarity, and enhanced symmetric division to expand the stem cell population. Furthermore, miR-205-deficient mice spontaneously developed mammary lesions, while activation of miR-205 markedly diminished breast cancer stemness. These data provide evidence that links tumor microenvironment and microRNA-dependent regulation to disruption of epithelial polarity and aberrant mammary stem cell division, which in turn leads to an expansion of stem cell population and tumorigenesis. This study elucidates an important role for miR-205 in the regulation of mammary stem cell fate, suggesting a potential therapeutic target for limiting breast cancer genesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain

Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance...

متن کامل

Mesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells

Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...

متن کامل

Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis.

Receptor Activator of NF-kappa B (RANK) pathway controls mammary gland development in mice but its role in mammary stem cell fate remains undefined. We show that constitutive RANK signaling expands luminal and basal mammary compartments including mammary stem and luminal progenitor cell pools and interferes with the generation of CD61+ and Sca1+ luminal cells and Elf5 expression. Impaired mamma...

متن کامل

MicroRNA-205 regulates ubiquitin specific peptidase 7 protein expression in hepatocellular carcinoma cells.

Ubiquitin specific peptidase 7 (UPS7) has a critical role in the development and progression of cancer, at least in part, through its regulation of p53 protein stability. However, its molecular determinants remain to be elucidated. In the present study, it was identified that microRNA‑205 (miR‑205) may negatively regulate UPS7 protein levels through targeting its 3'‑untranslated region in hepat...

متن کامل

Regulation of Mammary Luminal Cell Fate and Tumorigenesis by p38α

Mammary stem and progenitor cells are essential for mammary gland homeostasis and are also candidates for cells of origin of mammary tumors. Here, we have investigated the function of the protein kinase p38α in the mammary gland using mice that delete this protein in the luminal epithelial cells. We show that p38α regulates the fate of luminal progenitor cells through modulation of the transcri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 7  شماره 

صفحات  -

تاریخ انتشار 2014